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1. INTRODUCT ION

The following interim technical report has been prepared by
S&D Dynamics, Inc. under Contract No. DAAG29-83-C-0004 to the
U.S. Army Research Office, Research Triangle Park, NC.

This interim report presents the detailed formulation of the
equations of motion of a projectile of finite geometric and iner-
tial properties traveling in a flexible gun tube. The formulation
permits the projectile six degrees-ot'-freedom relative to the gun
tube; three orthogonal translational motions of the projectile
c.g. relative to the instantaneous gun tube axis and three
(Eulerian) rotations of the projectile about its c.g. (related
to projectile pitch, yaw and roll motions). The formulation
accounts for projectile spin, mass eccentricity, elastic deforma-
tion of the projectile rotating band and bourrelet, and projec-
tile/bore interfacial friction and torque transmission, Further-
more, the formulation is unrestricted regarding the nature of gun
tube motion.

The detailed formulation is presented in Section 2. A
comparison of this formulation with other projectile descriptions
and formulations is presented in Section 3. Conclusions are
presented in Section 4. References cited are presented in
Section 5. The Euler angles and associated transformations

employed are defined in the Appendix.




2, FORMULATION OF PROJECTILE EQUATIONS OF MOTION

The simultaneous system of differential equations which
describe the general, six degree-of-freedom motion of a projsctile
traveling in a flexible gun tube are formulated in this‘section.
The pertinent equations are formulated in terms of the loads and
moments applied to the projectile in Section 2.1, Simplification
of the projectile angular velocity and acceleration expressions
is discuséed in Secticon 2.2. The applied loads and moments acting
on the projectile are defined in Section 2.3. The solution
technique, which allows simultaneous solution of the equations
herein developed with the equations of the gun dynamics simulation
code previously developed, is discussed briefly in Section 2.k

and will be presented in greater detail in a separate report.

2.1 Projectile Equations of Motion in Terms of Applied
Loads and Moments :

The projectile is described subject to the folloQing
assumptions:

(1) the projectile is assumed to consist nf a main body,
rotating band and bourrelet;

(ii) the projectile main-body is assumed to behave as a
rigid body of finite geometry and inertiaj

(11i) the rotating band and bLourrelet are assumed to behave
elastically (although not necessarily linearly
elastic);

(iv) the projectile c.g. is assumed to be escentrically
located relative to its geometric center;

(v) the projectile is permitted six degrees-of-freedom

relative tn the gun tube, namely pitch, yaw and roll

T T e o T A IO S baiipmnboniin ., ™™




about Eulerian axes, and translational motions along

body~fixed (orthogonal) axes.

The following coordinate systems are introduced for the

purpose of formulating the equations of motion of the projectile:

(1)

(11)

(iii)

S', with coordinates (x',y',z') and unit triad
(T‘,Sﬂ,ﬁ'), is defined as an inertial reference

frame fixed at the initial projectile position such
that its orientation coincides with the global
(earth-fixed) coordinate system defined in tlLe gun
dynamics simulation code;

So’ with coordinates (xo,yo,zo) and unit triad
(?o,ﬁg,ﬁo), is defined as an intermediate reference
frame whose origin translates with the projectile

along the gun tube axis and rotates with the projectile

about the instantaneous tangent to the gun tube axis.

?o is directed toward the gun tube muzzle, along the

instantaneous gun tube axis. At the initial projectile
position, 3; is directed along the radius from the gun
tube centerline to the projectile c.g.}

S, with coordinates (x,y,z) and unit triad (%1,3,k),

is defined as a body«fixed coordinate system whose
origin is located at the projectile c.g. % is

directed toward the projectile nose, parallel to its
geometric axis, At the initial projectile position,

3 is paralliel to 5 .
[o)

It is noted that the kinematic relations between So and S'

incorporate gun tube motion, as well as the two degrees-of-freedom

of the projectile corresponding to translational motion along the

AT n Y > Ty e




gun tube axis and spin (both of which are prescribed by interior

The remaining four degrees-of-freedom of the

ballistics data).

projectile are formulated in S relative to RO. Referring to

Figure 1, these are defined as the translational displacements

of the projectile c.g. in the SOJQO plane (denoted as ycg and

), and the Fuler angles corresponding to projectile pitch and

yaw, namely Y and @ respectively.

For the purpose of formulating the velocity and acceleration

t
of the origin of § relative to S , the Euler angles (76'60’92)

defined in the Appendix are introduced subject to the transforma-

tion |
P 475+ °;’2+1,:2¢, W
Fedilr LiFor Lok, ? (1)
Ve B Lo+ Linte |
where (referring to the Appendlx),
£, = cos ¥ cos 6,
L = cosY sin6, sinf - sin¥ cos ¥

2

A= cosY, sinb,cos g+ sinysing

/3

H

Lo = 5in¥ cosé,
A= Sing sind.sinf,+cos¥ cosf -
£ = sin¥sinb,cosf-cos¥sin?,
A, =-sinb,

L. = €056, 5in %,

L3, =c0s6,€089 )
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Since So is constrained to move with the projectile, the
position vector of its origin, ﬁo' as shown in Figure 2, has
components which are functions of time, t, as well as distance
along the gun tube axis, s. Hence, the velocity of the origin

-

1 -
of So relative to S , namely ¥V_ (= dR /dt), is given as

- [& alséx]l+[§;t‘ 4535174 98’ ds 9214 (3)

A
Since io lies along the instantaneous tangent to the gun

tube axis it follows that

ox' _ g° ¥ _ p°
5; T Au gy 5%"/[11;

‘QJ

= 4, )

w

Hence,
Y = [g_%"’ "':LLf,s ? j“dt]/’ ,l; ]{’ (5)

Applying the transformation presented in equation (1), and
noting that ds/dt denotes the instantnncous projectile velocity,
vp (as prescribed by interior ballistics data), there results
from equation (5) the velocity of So in the form

= [y +1,, I*G}*l” 1%+ [/::%%L"’/Zu at ju }f”
* [lu 9"*[, jsa :J Z: (6)

)
Since § is earth-fixed, the instantaneous acceleration of
So is readily obtained by differentiating equation (3) with

respect to time noting that

d, -0, . )
AR LG “

from which there results
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here a tes d it,
where a  denotes vp/«

Once again applying the |ransformation presented in equation

(1), and noting equation (4), there results the acreleration of

So in the form

(9)

° a « Xy’ o Yo a
Qy, = ,(u‘%;:. + "g—?. ¢j,&‘l—f.+z.u;[5; cosb,cosf, - J't sthf]
¥ .
sy (S coseos B- 3 sin ] (10)

/eu "Izs L lss‘)r 1"[ ‘cosB,sing,+ 3‘9'6057

-V [‘)wcose sing, + f)g‘cos?’.] ) ' j

Noting that So is constrained to move with the gun tube in

' [
the 30-?:0 plane, it has angular velocity, Gjo, relative to S . The

expression for G)o (written relative to So), is given as oy
‘]
- £ ~ ] :

@ = W L+ Wy + Wy f, (11)

8




where (referring to the Appendix),
Wy, = S'f-‘/.;sine. ]
wy, = Gcosf+Vcos6, sinf | (12)

Wy, = -8, 5inP+ Yeosbcosf |

and‘*;,eo and ?L are obtained applying equation (7).

Noting further that

dO) = )+ ox() (13)
dt
there results the angular acceleration of So relative to S'
ey
o . 2 . “ L4
L, = Ou b+ O 4+ W, £, (14)
where (from equation (12)),
e, = £ -¥5in6,- ¥ 6cosb, )

Wy, = é,cosﬂ“iicase.sinﬁ-“&é..smasinf+w,.$'€ ? (15)

Wy = -G sin®+¥cosb,cosf - $G.5inb.cos s - M,,‘Z )

Equations (6), (9), (11) and (14) prescribe the linear and
’ 1}
angular velocities and accelerations of So relative to S . It
remains to prescribe the motion of the projectile c.g. relative
to SO.

Letting ;;g and zcg respectively denote the translational

velocity and acceleration of S relative to So’ it follows from
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Figure 1 that

y""i’; v 2'3 ’ (16)
% Yuybo ! iy,

Letting E')(‘g denote the angular velocity of S relative S _,

and further specifying that

>

- = ~ o~ 17
w;, wl"z + U,"f + w‘."‘ ( )

the components of ‘:)cg are prescribed (analogous to equation
(12)) as functions of the Euler angles (¥,8,f) of S relative to

S, in the form
Wey= P - ¥sind
Wyey = Bcos ¥ + ¥cosOsin® (18)
Wz, = -8sinf + ¥cosbcos ¥

Noting that So is prescribed to rotate with §, equation

(17) must be subjected to the constraint

@2y-1 =0 (19)

Introducing the transformation from S to So, namely
A ~ Y

-~ £ 0

Z, jnz + /el&f + /(I.!'4

A

% = /&,i + /Zu; + /ezs‘l.- (20)

-

W




and noting that the direction cosines, 'eid' are defined in terms
of the EFuler angles (VSB.?) analogous to the definition presented
in equation (2), there results from equations (17) thru (20)
CP = (I&l)e (21)
cosh
which prescribes the dependence between the Euler angles of S
required to satisfy the constraint presented in equation (19).
Equations (16) and (17) (subject to equation (21)) respec-
tively prescribe the translational and angular motions of the
projectile c.g. relative to So'
Referring to Figures 1 and 2, the instantaneous position
vector of S relative to S' is given by §o+;cg’ Hence, noting
equation (13), the (absolute) translational acceleration of the

1

projectile c.g. (relative to S ), namely @, is given by

G = G,+ Q.+ 20, G, + WoxFey+ @DX(DX ) (22)
= <y C A ] ° CRAlY
while the (tatal) angular velocity of the projectile (relative to
]
S ) is given by

W= Gy + W (23)
Applying equation (13) to each vector on the right-hand side

of equation (23) there results the (total) angular acceleration

¥
of the projectile (relative to S )

b= @+ Wy + Ox @, (24)

Substituting equations (9), (11), (14), and (16) into equa-

tion (22) there results

11




~

a=[a,+2 Wy, 2y~ 2 W, 9.’-» 2ot ) (yy EN Wy, ag,.w,.)] 1, +
+ [.a,‘ + ?« “2We 2y~ (W~ W 0h )- (y,,*e)(w,:-v wi)) f. *

+ [ag.* é.’ + 2“!.1}., + ‘¥‘1+€)(d)u.+ U,.w’.) - ZQJ(‘J:.* w;‘) ] *[. ( 25)

Transforming equation (11) from S, to S via equation (20)
and substituting the result, along with equation (17), into

equation (23), there results

G = Whiv Wi+ W, 4 (26)
where,
Wy = Wy * Lywigr Sy + My,
Wy = Wiy + Ay, t [zz“);.+ jsz“)z. (27)

04 = a&ﬁ + X&sﬁho‘* /&Saﬁ,'+zlgihho

Transforming equation (14) from S, to S via equation (20),
differentiating the components of equation (17) with respect to
time, and substituting these results, along with equation (17),

into equation (24), there results

o = d),f+d),;+d)‘£ (28)

where,

12
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dfx = “un, + -'ZII w‘u,* 4[:4 “.);,4' ‘Ih‘")!,‘* %.’(Z, U,."'/g” w’."'/(" w!., +
- wa.‘('[u o * .u"-’j."' /[3,; wl.)

&.J,’= djh* ’[;"":"o",[nd{. J-jud)..-t-(‘)x"( AR /"w’.e- j” w’.) + ? (29)
- w!¢,( ’ZII w"o + /l-ll w,c *jll w!. )

(A.jg = w&,* /e/s (4.)‘,"/(“ “:’7. + /‘lss “)lo"' &J’"(j,, Wt Ly w,."'/[s/ “)t,) +

'w«.,(z!n o+ Lasy,+ dywy) J
and (from equation (18)),
W,y ® $-Y¥sin6 - ¥6 cosé

LZ),‘, = 8cos¥+ Vcosbsin?-¥osinbsing + w,‘,{{’ (30)

We, = ~Oing +¥ cosbeos¥ - ¥hsinbcosP- uh, ¥

and (from equation (21))

9 ¥ :
cosO [cos"p + glan’¥ tand I | (31)

¢ - ‘t‘anV’é’ +

~ cosB

We are now in a position to formulate the projectile equé-
tions of motion. Letting ¥ (which remains to be prescribed)
denote the resultant applied force acting at the projectile c.g.,
and applying Newton's law of motion with & as prescribed in equa-

tion (25), there results the three scalar equations of transla=

13
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tional motion of the projectile c.g. (written relative to So) in

the form

Fr. =m, [ Q.2 U,.éq. 2 U, 7:3* 2.,((;),.-0- Wy, W) = (fﬁy* E)We,- uA, wﬂo)] ]

Fro= el =200, g - 2 (7 3, 00) - (Yoy* €N+ w},)] ? (32)

Fe=mlagt £4+2 oy * (Yy* EN W * Wy, )= 24y (ki * )] J

where mp denotes the mass of the projectile, and Fxo, Fyo and on
denote the components of F along the respective axes of So'
Letting M (which also remains to be prescribed) denote the
resultant applied moment acting about the projectile c.g., and
applying the principle of angular momentum with @ and (2'7 prescribed
respectively in equations (26) and (28), there results the three
scalar equations which prescribe angular motion of the projectile

(written relative to S in order to preclude introducing time

derivatives of the projectile inertia tensor) in the form

Ma= Tty + (L Tyt 00+ Loyt =) - T ot rey )= Loy (0h'-5})

My = Ty (Lo Ladwy st Lyalat wy=)- Ly (@D* o ) - I, (wp-a8) f (33)
M= I, (L Lot + T, Syt ) - Ty (G ¢ ah h) - T oglo- )

where Mx' My and Mz denote the components of M ubout the respec-

tive axes of 8, and Ix I cesy Izy denote the elements of the

x’ .y}.!

projectile inertia tensor written relative to S.

Within the framework of the assumptions introduced, equations

(32) ana (33) present the gonoral equations of projeciile motion

1h
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in terms of the applied loads winl momentis.

2.2 Simplification of Angular Velocity and
Acceleration Expressions

The expressions for the terms representing the angular

veloclity and acceleration componients entering equation (33) may
be greatly simplified by noting that for most practical applica-~

tions¥ and 8 are sufficiently small such that

sin¥xy ; cosv=/
(34)

sin@=8 ;3 cos@=1
Under this condition it follows from equation (21) that

P e (35)

while from the mean value theorem it follows that the integral of
of equation (35) will at most be of the order ¥8. Hence, to

first order

L= (36)

Imposing the above conditions and retaining only linear (first
order) terms in¥ and B, the direction cosines for the transforma-

tion from S to S_, as given in equation (20), simplify to

L= M= Lyy= 1
,13;= °/£;/'= -¥
(k (37)
/(/s="/€3/ =6
/(z.s = /u’ 0 y

U

15
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Noting that equations (18) and (30) simplify respectively to

Wy, =2 e (38)

and

W,y ¥6-0%
. .o o o

Wy, = 6+ Y¥¥o (39)

[ LAd [d L] O‘

Wey ™ ¥ - 60 - %6
and substiiuting these expressions, along with equation (37) into
equations (27) and (29), there results the greatly simplified
expressions for the angular velocity and acceleration components
entering equation (33) in the form

Wy = Wa, + P (W 6) - 6(We,+F)

(J.), = l.«),. + é - Y(A)x. (40)

W= wy+ ¥+ G,




dy = Ga,+ WG+ Gy ) - 0(F + g )+0(0W, 2wy, )+ F( Pray,) )

G= Wy* 6+ P(O¥-0n) - Flwn*rPup)+ ¥6(Buhtwy,) P (W)

Oy Q¥ - (6 -0n) - $6™ O(w,- Oy )+ OF(- Furr W) |

2.3 Applied Loads and Moments

The equations of projectile motion previously developed
require specification of the applied loads, F (written relative
to So)’ and the applied moments, M (written relative to S), for
completion of the formulation. These loads and moments arise as
a consequence of the projectile weight, interfacial contact of
the rotating band and bourrelet with the bore, propellant gas
pressure acting at the base of the projectile, and compressed
air ahead of the projectile.

2,3.1 Projectile Weight Loading
The load applied to the projectile c.g. due to its own

weight is given by
- N
F, =~ myq f (42)

where mp and g denote respectively the projectile mass and
gravitational acceleration.

Applying the transformation given in equation (1), equation
(hz)viu written in component form (relative to So) for applica-

tion to equation (32), as follows




F;-N

==mg sin¥ cosé,

P = -mpq(sin¥ sinb,5ind+ cos%eosf) ¢ (49

F;w= _mpj(sinxf sinb.cos¥ - cos¥sin¥,) J

2.3.2 Rotating-Band[Bore and BourreletZBore

Interfacial Contact Loadings

The loads and moments applied at the projectile c.g. due to
interfacial contact of the rotating band and bourrelet with the
bore are derived subject to the following assumptionss

(1) radial deformation of the rotating band and bourrelet
are characterized by Winkler foundation models;
rendering rotating~band/bore and bourrelet/bore
interfacial load distributions which are directed
radially, with local magnitude determined by
resultant local radial displacement;

(11) both the rotating band and bourrelet are permitted
radial pre-loaded initial states;

(1i1) the instantaneous annular segments defining rotating-
band/bore and bourrelet/bore interfacial contact are
kinematically determined by the extent of annular
compression within the rotating band and bourrelet
at each instant;

(iv) the projectile main-body is assumed to be rigid
compared to the rotating band and bourrelet;

(v) curvature of the gun tube axis between the planes

containing the rotating band and bourrelet is

18




R

A

iy R

neglected;

(vi) rifling torque is transmitted without slippage via
a uniformly distributed circumferential load actin_g
over the instantaneous annular segment of the
rotating band in contact with the bore;

(vii) the Euler angles ¢4 and § satisfy equation {(34).

In view of Assumptions (iv) and (vii), the displacement

relative to So’ J, of any point of the projectile in a plane

perpendicular to its geometric axis is given by
= Yyt A¥)Jo+ (24~ £O) R, ()

where £ denotes the perpendicular distance from the projectile
c.g. to the plane of interest. It is noted that £>0 implies
that the plane of interest is forward of the projectile c.g.,

£ =0 implies that the plane of interest contains the projectile
c.g.y while £ ¢ 0 implies that the plane of interest is aft of the
Ceg.

The radial component of this displacement, é;, is given as
(S,.‘:é.?r: (7¢’*1‘*)C05¢+(zc,‘»le)ﬁi’l? (45)

where ? denotes the angle between the projection of the yo-a.xis
onto the plane of interest and the line from the gun tube
centerline to the point under consideration.

The maximum radial displacement, Smax, in the plane of

interest is determined by setting

2

= L6
3¢ 0 (46)

19




Letting ?%ax denote the oriesntation of maximaim radial

displacement, there results from equation (45)

- z-c "“10
P = tan'(_—_"}:»f,[«p' ) (47)

and hence,

e /q?.,uv)ﬂ (24-L6) (48)

In view of equations (47) and (48), there results from

equation (45)
5 = duax COS(F~ Fons) (49)

Equation (49) denotes the radial component of displacement
of any point in the plane of interest, and in particular, it may
be used to specify the radial displaccment of the planes containing
the rotating band and bourrelet at the bore surface. It should
be noted that the radial displacement as given by equation (49)
is symmetric with respect to the angle q%ax.
In the sequel, quantities referred to the plane containing
the bourrelet are assigned the subscript "1", quantities referred
to the plane containing the rotating Linnd are assigned the

is replaced by either §. or

subscript "2", Furthermore, J 1

max
52, and q&ax is replaced by either ?1 or ?E.

Assuming that the bourrelet is forward of the projectile
C.&.y, while the rotating band is aft of the c.g., the radial
displacement at the bourrelet due to projectile motion is given

by

3, = S,cos(¥-,) © (50)

20




where,

§ =iy )t (2o L0) (51)

——

ﬂ= tan™’ (‘“‘L"""_'z‘ ~4 )

Y A J

while the radial diaplacement at the rotating band is given by

g, = §,c08(¢-4,) | (52)

where,

|y L (22 oo)
- e +l..0
f=tan” ;;’-:7:;;'-)

Letting 6‘1’ and 62 respectively denote the initial radial

(53)

pre-compressions of the bourrelet and rotating band when the bore
centerline and projectile geometric axis are initially aligned,
it follows from Assumptions (i) thru (iv) that the radial loads

per unit circumferential length are given as
° .
Ri('ﬂ = ‘ﬁi[éi "'Jiﬁos(‘f'fi)] v 1512 (54)

where k, (i=1,2) respectively denote the radial spring stiffness

per unit circumferential length of the bourrelet and rotating

band.

It is noted that the expressions presented in equation

(5#) are valid for compression only, that is, for

(87 +8icos(9-9)]20 5 i=n2
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Defining #L (i=1,2) as the instantaneous maximum annular
range (measursd from 4&) for compressive loading of the bourrelet

and rotating band, equation (54) may be written in the form

4[5+ S;cos(9-9)] 5 (f+R)2P2(F-%,)

Ri9)= (56)
0 s (%-8)>P>(%+¥)

It follows from equation (55) and the definition of <fc that
when ég = 0, ?c = W/2. Hence, in the absence of pre-compreision,
loading takes piace on half of the bore surface, and this loading
is symmetric with respect to the angular orientation of maximum
radial displacement. When Jg » Ji it follows that qz = . Hence,
when displacement due to projectile motion is less th;n the pre-

compression, contact is maintained over the full bere surface.

For intermediate cases, namely O < 62“ 81' it follows that

%5 = fan"(— (gi)z./ ] 5 i=l,2 (57)

)
The radial load distribution corresponding to an intermediate

case is depicted in Figure 3.

The instantaneous interfacial contact loads acting on a
differential element of either the rotating band or bourrelet are
as depicted in Figure 4.

Under Assumption (vi), the friction force,‘pﬁ, acts tangen-
tial to the rifling surface in the direction opposing projectile

motion at the surface. The angle e depicted in Figure 4 is given
by
' -1
o = tan” (tuh) (58)




3

Figure 3 - Radial Load Distribution for Intermediate Case
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where r, and t, denote respectively the bore radius and rifling
twist. 1In addition, in accordance with Assumption (vi) the
torque, T, applied to the rotating band per unit circumferential
length is assumed to be a constant independent of ¥ over the

range of compression.

Letting dﬁg denote the incremental resultant contact load

acting on a differential element of either the bourrelet or

rotating band, it may be written in component form (relative to

So) as
-

A= oA T d Bl v i (39

[}

where referring to Figure 4, there results for the bourrelet

GLF;;"-: —Q/‘,R'(‘f)cm‘m. af )
dli': = rgR,(‘!)[‘COSS”+/L,sinuSinff]ol-ff T (60)
dF‘= RRW[-sinf - sinacos?IdS

*
and for the rotating band

A Fy, = =, jt, R(#) cosw o &

d F,;i= I".,{ R‘('f)[“ cos¥ +/a,.sinu.sin ¢]-Tsin ‘f} dY } (61)

d 5.2’ R{RUPLsing -, sinacos ]+ Teos ¢} dy

where,y1 and/u2 dencte respectively the coefficients of friction

at the bourreiet/bore and rotating-band/bore interfaces.

Hence; the resultant fcrce applied to the projectile c.g. is

pakl A BT G o . e WG



obtained by integrating equation (59) over the respective
rotating-band/bore and bourrelet/bore interfacial contact surfaces
defined by (‘91-«%1) << ((}’i+¢ci); i=1, 2.

Substituting equation (54) into equations (60) and (61), and
performing the required integrations for both the rotating band
and bourrelet, there results the desired contributions to the
force components acting at the projectile c.g- (relative to SO)
due to rotating band and bourrclet interfacial contact with the

bore, namely

F;:= ~2K cos«a[{,/a,(é,"s‘t”n{sinﬁ) *441/4;(5:.‘@‘* S.5in¥,)] )
Fre= p;,{%,[/.‘,5irmsin$f-cass’,][2.:5,".$oin‘ff.,,+ §,(%.+sin cos® )|+

+ [y sinsing - cos @128 sinf,+ 5,4, +sind,cos %, )]+
-ZTsin‘{;sin‘ﬂ‘} } (62)
F;: =R {-1‘, [/l‘ sinaca.sf+ sin&‘f][z 5l°sin f, + J, (ggl+ Si n‘f;’, COSS% )]+

“&[/J,Sin«co.sf +sin@)[28,sind+ Jl(‘ﬁj.sinﬁtcosﬂt)]*

+2Tcosh sing,} )

Referring again to Figure 4, the moment arm,.Z& y from the
i

projectile c.g. to the load acting on the differential element is

given by

J.,f Lt + [, cosy- (;/,,-fa)]}: +[r sm?-z.,]i. (63)
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Hence, the resultant moment applied to the projectile c.g. is

given by
2 #‘ﬁi . :
~al b e ¢
M =_Z,f,€"‘,x dF; (64)
! fl"ﬁ:

Substituting equations (54), (60), (61) and (63) into equa=~
tion (64), and performing the required integrations for both the
rotating band and bourrelet, there results the contribution to
the moment components acting at the projectile c.g. (relative to

So) due to rotating band and bourrelet interfacial contact with

the bore, namely

M= nl tana B - 20T (gye e B 24
M= #5[Llusinacosgs sin®)- pcosnsing][285in G+ 8% +sinf cose)|+

- A LG psin cosvsin®)+ 1,y cosmsint][2 8 sind, ¢ (% e sind cos I}

220, 4 Tcos sinf., - Z. tano E': $ (65)

N:.’ £r [,l,(,u, sinusin®]- cos%)+ f pycosx cos Fl2d5in® + (£ + sin®,cos®, ]+

+£";[-4(,¢‘sin¢ sing-cosf|}* I, pycoswcos ﬁ][zs:sin‘ﬂﬁ* 3% sin‘f:&wa‘lzl)]*

+2r.I,Tsinﬂ sin ‘ﬂ,‘l’ﬂ*e)tanm f:,c J

The desired contribution to the moment components Mx’ My and

M, (written relative to S), is obtained applying the transformation

27
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given in equation (20), from which there results noting Assumption
(vii)
[ ¢ ) - [
M, = M, + ¥M,-OM,
¢ ¢ ¢
M, = M'.- ‘!PM’x. (66)

M= Mg+ O M.,

2.3.3 Propellant Gas Pressure and Compressed

Ailr Loadings

The loads and moments applied to the projectile c.g. due to

probellant gas pressure acting at the base of the projectile and
compressed ("ram") air ahead of the projectile are derived subject
to the following assumptions:

(1) both the projectile base and "ram" air pressures are

assumed to be known functions of time only, and at
any instant are uniformly distributed over the
respective projectile surfaces over which they act;

(1i) both the rotating band and bourrelet are assumed to

act as ideal seals (i.e., no gas 1eakage);

(1ii) the Buler angles Y and @ satisfy equation (34).

Under Assumptions (i) and (ii), the base and "ram" air
pressures act as effective hydrostatic pressures; generating a
force equal to - p-ﬁ-dA on the differential surface area element,
dA, with unit outwsrd normal N, Further, from general principles
of hydrostatics, these pressure loadings may be replaced by
resultant forces acting at the geometric center of, and directed
perpendicular to, the planes containing the bourrelet and rotating

band. Hence, the points of application of these resultant forces

1 ‘T,"q




are defined by the respective intersection of each of these
planes with tho gun tube centerline, as shown in Figure 5.
Since T is parallel to the geometric axis of the projectile,

it follows that

s
"
!
»T
>
~3

(67)

where p_ and p, denote respectively the instantaneous "ram" air
and projectile base pressures, and A denotes the projected area
of the bourrelet and rotating band planes perpendicular to f.

Under Assumption (iii), it follows that

A= TRt (68)
Hence, the resultant pressure load, Fp, is given by

E=(p-pimn*l (69)

which, noting that in view of Assumption (iii)
T-1+vl-04 (70)
2 = ZO + ’qu - 6 o

may be written in component form (relative to So) for application

to equation (32) as

F= (g-p)R

MY @

T

r‘:-; —(13-3)71‘!’;‘9 J
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Once again in view of Assumption (iii), it may be shown that
the moment arm,‘Ia, from the projectile c.g. to the "ram" air

load, Tra. is given by

L= 41 - (e d 0} - (2y-1,0)E (72)

-

while the corresponding moment arm, lb’ to Fb is

- ~ A A
/[‘r' '!,,Z - (%,*8‘»&’)")1‘ - (Zc,"'/‘ze)i (73)
Hence, the resultant moment applied to the projectile c.g.

is

Mp = fux FL+ AXE | (74)
Substituting equations (67), (72) and (73) into equation
(7&), and performing the indicated vector operations, there
results the desired contribution to the moment components acting
at the projectile c.g. (relative to S) due to propellant gas and

"ram" air pressures, in the form

(75)

~"

My =-TE (-0 Zq+ O(p L+ ph)]

M= MR- Rl - Y(gh Al |

2.3.4 Summation of Appliec Loads and Moments

Summing corresponding force components from equations (43),

(62) and (71), there results for application to equation (32)




= F + B+ F (76)

Similarly, summing corrvesponding moment components from
equations (66) and (75), there results for application to
equation (33)

¢

M, = My
Mv"_‘: M; +M; (77)
Me= M;+ M;

2.4 Solution Technique

Within the framework of the assumptions introduced, equations
(32) and (33), with the appliied loads and moments as defined in
equations (76) and (77), prescribe projectile in-=bore motion in
terms of projectile design data, interior baullistics data, and
gun tube design and motion data. Of these required data, gun
tube motion data are not known a priori, and hence, equations
(32) and (33) must be‘solved similtaneously with the equations
of the gun dynamics simulation code (References 1 and 2).
Equations (32), (33), (76) and (77) consist of a system of
six simultaneons ordinary differential equations for the determi-

nation of the six unknowns Vor Yo' Zog? ¥, @, and T. However,
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noting that vp is to be prescribed by interior ballistics data,
the first equation in (32) may be deleted (or retained for use as
a check); rendering a system of five simultaneous equations for
incorporation within the gun dynamics simulation code.

To incorporate the projectile motion equations within the
simulation code, it is noted that the parameters representing
gun tube motion in equations (32) and (33), namely, the compo-
nents of ﬁo’ their time derivatives, the Euler angles, V%, 90 and
y%,~and their time derivatives, are related to gun tube motion
parameters defined in the simulation code., In addition, the
negative of the interfacial contact loads between the rotating-
band and bore, and bourrelet and bore, as applied to the projec-
tile, must be applied to the gun tube. The specific details of
incorporaving the projectile in-bore motion equations herein
developed within the gun dynamics simulation code will be

presented in detail in a separate report,
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3. COMPARISON WITH OTHER PROJECTILE DESCRIPTIONS AND FORMULATIONS

The formulation herein developed is general in that it
prescribes the full six degree-of-freedom motion of a projectile
of finite geometry and inertia traveling in a flexible gun tube.
The degrees-of«freedom selectcd correspond to three orthosgonal
translational motions of the projectile c.g. relative to the gun
tube axis and three (Eulerian) rotations of the projectile about
its c.g. (related to projectile pitch, yaw and roll motions).
Since gun tube motion (which is unrestricted within the formula-
tion) is not known a priori, the projectile equations of motion
heréin formulated will be solved simultancously with the equations
of the gun dynamics simulation code previously developed (Refer-
ences 1 and 2).

A similer, but far more restrictive formulation has recently
been presented by S.H. Chu (Reference 3). Chu permits the projec-
tile three degrees-of-freedom; (wo orthogonal translational
motions of the projectile c.g. relative to the gun tube and one
rotational (pitching) motion, As a consequence of neglecting the
remaining degrees-of-frecdom, the gun tube centerline, the projec=-
tile c.g., and the resultants of 1he rotating band and bourrclet
contact-load distributions with the bore all lie in the same
plane. Hence, Chu's formulation is essentially planar; whercas,
the formulation herein prescenled is of general three-dimensional
character,

Another recent; but also restrictive projectile motion
formulation has been presented by H.L, Langhaar and A.FP, Poresi
(Reference 4). Langhaar and Boresi present a rigorous kinematical

description of a point moving along a timee-depcendent apnee curve,

h




The point is identif'ied with the goometric center of a rigid pro-
Jectile. The time-dependent space curve is identified with the
centerline of a flexible gun tube. The projectile i= further
characterized such that its geometric center and c.g. coincide
(which precludes the ability to iuvestigate the effecis of mass
eccentricity), and such that its geometric a:"is is directed along
the instantaneocus tangent to the gun tube centerline (which
precludes the ability to investigate the effects of projectile
pitch and yaw motions relative to the gun tube). The projectile
is permitted two degrees-of~freedom relative to the gun tube;
translational motion of its c.g. along the gun tube centerline
and rotational motion about the centerline (corresponding to
projectile spin). Accounting for rotary inertia of the projec
tile about its spin axis, there results a traveling point-mass
projectile load with superposed gyroscopic couple.

J.J. Wu (Reference 5) also adopts a traveling pointe-mass
projectile description, but with superposed traveling pitching
moment due to mass eccentricty (while neglecting rotary inertia
about the pitch axis). Several other investigators (References
6 thru 8) have adopted the_simpler traveling point-mass descrip-
tion, with and without mass eccentricity and projectile spin

(while neglecting rotary inertia about the spin axis).

|
|
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4, CONCLUSIONS

A aystem of simultaneous differential egquations has been
formulated which describes the general motion of a projectile of
finite geometry and inertia traveling in a flexible gun tube.

The formulation permits the projectile six degrees-of-~freedom
relative to the gun tube; three orthogonal transiational motions
of the projectile c.g. relative to the gun tube axis and three
(Eulerian) rotational motions of the projectile about its c.g.
(related to projectile pitch, yaw and roll motions). The formu-
lation is presented in terms of interior ballistics data, projec-
tile design data, and gun tube design and motion data. The formue
lation accounts for projectile spin, mass eccentricity, elastic
deformation of the projectile rotating band and bourrelet, and
projectile/bore interfacial friction and torque transmission.
Furthermore, the formulation is unrestricted regarding tﬁe nature
of gun tube motion.

The formulation herein contained has been compared with pro-
Jectile descriptions and formulations employed by other investi~
gators and, based upon this comparison, is considered to be the most
generally applicable formulation appearing in recent literature.

Since gun tube motion is not known a priori, and indeed
since projectile motion affects gun tube motion and vice versa,
the projectile in-bore motion equations herein formulated will be
incorporated within and solved simultaneously with the gun
dynamics simulation code equations previously developed; permit-
ting replacement of the traveling point-mass projectile descripe
tion presently contained within the code. Incorporation of the

projectile motion equations within the simulation code and




sinultaneous solution with the gun dynamics equations, as well as
comparison of the results obtained with previously obtained
results treating the projectile ns a traveling point-mass, will

be presented in a separate report.
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APPENDLX

Lage,

The instantaneous angular orientation of the coordinate
s
system S_, with coordinates (xo,yo,zo) and unit triad (10,3°,k0),
]
12 )
ntl Al oAl
and unit triad (1 ,J ,k ), is defined in terms of the Euler angles

(YB,GB.YL) depicted in Figure A.

] t ]
relative to the coordinate system S , with coordinates (x ,y

Referring to Figure A, the instantaneous angular orientation
of So is achieved by subjecting S' to the follouwing consecutive
rotations:

(i) ¥, about zc, bringing x to its final elevation, g,

and y' to its intermediate orientation, X ;

(iti) 8, about ¥, bringing ; to its final azimuth, x_,

and z' to its final azimuth, ;;
(111) ¢, about x_, bringing § to its final orientation, Yoo
and ? to its final elevation, z .

The direction cosines,.lgj, defining the transformation

between So and S' are obtained by noting the relation between the

unit triads depicted in Figure A subsequent to each consecutive

rotation, as follows:

(i) following the rotation’ys, there results
s » . ~
= cos Zj -sin¥%,

f' = sin 2} tcos¥ Z,

(i1) following the rotation 8, there results

~

i c050e I, + sine.i}

A

4 =-5in6,1, + cos8, Z}

AR itz e

A-1
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(1ii) following the rotation 3;, there results

”~

f,l = c.o.sf;jz- sing 4,
Z;= .sin.s‘.?j:. +cos$€'{,

Eliminating the unit triad (33,11,£;) associated with the
intermediate coordinates (g,q,?), there results the transforma-
tion presented in equation (1), with the direction cosines as

defined in equation (2).

The relation between the angular velocity of So relative to

s , namelyiﬁo, and the Euler angles, is obtained by noting that

[:& = }é&4£"+ éz'?é +'92

~
lo
and substituting the above transformations between unit triads to
obtain @  in the form prescribed in equation (11); which renders

the components as given in equation (12).




